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TRAJECTORY INFLUENCE ON THE HEATING DISTRIBUTION 

AROUND THE APOLLO COMMAND MODULIF: 

By Dorothy B. Lee 

The effects of l i f t - to -drag  r a t io ,  en t ry  angle, atmosphere and 
type of boundary-layer flow on the d i s t r ibu t ion  of heating rates t o  the 
Apollo conmad module a r e  discussed and comparisons of the  e f f e c t  of 
varying these parameters are presented. 
angle has the  grea tes t  influence on the locat ion on the  Slmt face of 
t h e  maximum heat load. 
pheric deviation is  indicated. 

It i s  shown that the  en t ry  

A la rge  e f f ec t  of l i f t - t o -d rag  change and atmos- 

INTRODUCTION 

Since the  t r a j e c t o r y  of a vehicle entering the e a r t h ' s  atmosphere 
from a lunar  mission d i c t a t e s  the thickness of the  heat sh ie ld  material ,  
much study has gone in to  the development of heat  sh ie ld  design t r a j ec -  
t o r i e s  f o r  the  Apollo c o m n d  module. The present design limits f o r  the 
en t ry  t r a j ec to ry  and heat sh ie ld  performance a r e  based on l i f t - t o -d rag  
r a t i o s  (L/D) of . 3  t o  .4, i n i t i a l  en t ry  angles of -5.200 t o  -9.45' and 
on a non-standard atmosphere given i n  reference 1. The purpose of t h i s  
paper i s  t o  show the  influence of various t r a j ec to ry  parameters on the 
heating estimates t o  the  command module and how they a f f e c t  t he  d i s t r i -  
bution of the  heating around the  entry configuration. 

SYMBOLS 

.' 

L 

D 

G 

L/D 

rnaximum body diameter, 12.833 f t  

load f ac to r  

l i f t - to -drag  r a t i o  
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2 
heating rate, Btu/ft / see  

t o t a l  heating, Btu/ft  

maximum body radius, 6.4167 f t  

free-stream Reynolds number based on body disrmeter 

l oca l  Reynolds number based on distance from the stagnation 
point 

distance along surface from center of spherical  heat  shield,  
f t  

t i m e ,  see 

velocity,  f t / s ec  

distance along surface from stagnation point, f t  

angle of attack, deg 

f l i g h t  path angle, deg 

absolute v i s  cos i t y ,  slugs /f t /see 

2 

density, s lugs / f t  3 

Subscripts : 

D diameter 

t stagnation 

t o t a l  convective plus rad ia t ive  

1 l oca l  

m free-stream 

RESUUTS AND DISCUSSION 

Reentry Trajector ies  

The MIT guidance log ic  t h a t  i s  planned f o r  t he  Apollo reentry ve- 
h i c l e  has been programed i n  the  I B M  7040 d i g i t a l  computer by the  
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Atmospheric Entry Guidance Group of t he  Guidance and Control Division. 
The in i t i a l .  conditions of flight path angle, b a l l i s t i c  number corres- 
ponding t o  L/D, range t a r g e t  and r o l l  angle have been var ied i n  the  
attempt t o  determine the  most c r i t i c a l  heat sh ie ld  design t ra jec tor ies .  
The various t r a j e c t o r i e s  are shown i n  figure 1. The steepest en t ry  
angle s tudied (-9.45') i s  not shown f o r  L/D = . 3  since it exceeds the  
20G l i m i t  imposed on t h e  s t ruc tura l  design. 
( y = -5.2' ) were computed with the use of the non-standard atmosphere 

deviation from t h e  U.S. Standard Atmosphere, 1962 (ref. 2). The s teep 
en t r i e s  were run with t h e  1962 standard atmosphere s ince the  density 

the  maximum heating rate occurs a f t e r  t he  January densi ty  becomes less 
than the  standard density. 

The shallow en t r i e s  

s (ref. 1) iden t i f i ed  as the  January atmosphere which includes a densi ty  

- deviation i s  inef fec t ive  f o r  t he  r e l a t ive ly  short  reent ry  t i m e .  Also, 

Theoretical  Heating Distr ibut ion 

The convective heating rates on the  Apollo command module ( f ig .  e) ,  
computed f o r  t h i s  study, are based on smooth body measurements obtained 
i n  wind tunnel  t e s t s  referenced t o  a measured zero angle of a t tack  stag- 
nation-point rate. 
of the  convective d is t r ibu t ion  i n  the  p i t ch  plane of t he  Apollo command 
module. The l o c a l  convective heating rates were calculated with the  use 
of figure 3 and t h e  curve f i t  equation of t he  stagnation point theory 
(ref. 3 ) .  The e f f ec t  of protuberances w a s  not included i n  the  calcu- 
la t ions .  The computer program calculates  the  heating rates f o r  the  10- 
cation on the blunt  reentry face a t  S/R = .9875 since the  or ig ina l  angle 
of a t t ack  computations (a, = 33', L/D = .5) found t h i s  t o  be the  maximum 
heating locat ion (ref. 4). The decrease i n  L/D, current ly  . 3  and .4, 
has resu l ted  i n  a sh i f t  of the maximum heating locat ion which w i l l  be 
discussed l a t e r .  

Figure 3 shows the measured angle of a t t ack  var ia t ion 

The rad ia t ive  heating rates t o  t he  f l i g h t  angle-of-attack stagnation 
point have been calculated as described i n  reference 5 and tabulated as 
functions of a l t i t u d e  and ve loc i ty  f o r  the  computer program t ab le  look- 
up. The values include non-equilibrium, equilibrium and u l t r av io l e t  
rad ia t ion  based on standard atmospheric conditions (ref. 2).  In order 
t o  obtain the rad ia t ive  heating a t  S/R = .9875, the stagnation-point 
rad ia t ive  heating rates were multiplied by 0.53 f o r  L/D = .4 and 0.49 
f o r  L/D = . 3  as Shown by the  d is t r ibu t ion  curves given i n  figure 4. 
The angle of a t tack  corresponding t o  L/D used i n  t h i s  study i s  
fo r  L/D = . 3  and 25O f o r  L/D = .4. 

made i n  tunnel t e s t s .  When a = 206 the  s t ama t ion  point i s  approximately 
a t  S/R = .65 and when 

% 

a, = 20' 
The locat ion of t he  stagnation point 

e f o r  various angles of a t t ack  w a s  obtained from pressure measurements 

a = 25' a t  S/R = -75. 
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Trajectory Effect  on Heating Distr ibut ion 

The maximum heating rates ant ic ipated across the  en t ry  face of t he  
Apollo command module a t  angle of a t tack  a re  presented i n  figure 5 t o  
i l l u s t r a t e  the  effect  t h a t  L/D and the reent ry  angle have on the  heating 
dis t r ibut ion.  The values were computed f o r  t he  time the  summation of 
convective plus rad ia t ive  r a t e s  a t  S/R = .9875 reach a peak during en t ry  
from the  t r a j ec to r i e s  shown i n  figure 1. Examination of f igure  5 re- 
veals the  sh i f t ing  of the  m a x i m u m  heating rate locat ion with the  L/D 
change and t h e  shaping of t h e  d is t r ibu t ion  with en t ry  angle change. The 
m a x i m u m  heating locat ion moves toward the  center of the  heat sh ie ld  near 
t he  stagnation point as the  L/D decreases. 

The e f fec t  of L/D and en t ry  angle on t he  heat load i s  i l l u s t r a t e d  
The L/D change from .4 t o  . 3  increases the  heat load be- i n  figure 6. 

tween 5 percent and 22 percent across the  blunt  face during the  shallow 
entry and about 10 percent on the  leeward ha l f  of the  blunt face during 
the  s teep entry. On t he  other  hand, t he  change from .4 t o  - 3  decreases 
the  heat load near the  stagnation point during t h e  s teep entry by a s  
much as 13 percent. 
paring figure 6(a) with 6(b) and 6(c) .  The shallow angle r e s u l t s  i n  
the  convective d is t r ibu t ion  d ic ta t ing  the  locat ion of the  maximum t o t a l  
heat load which occurs a t  S/R = .9875-while the  steeper angles s h i f t  
t he  peak toward the  center of t he  blunt face due t o  the  rad ia t ive  d i s t r i -  
bution having a greater  influence. 

The e f f ec t  of t he  en t ry  angle can be seen by com- 

Atmospheric Effect on Heating 

The e f f ec t  of a non-standard atmosphere on the  heating i s  demon- 
s t r a t ed  in  f igure  7. Comparison of the  maximum heating r a t e s  and loads 
shows tha t  t he  standard atmosphere y ie lds  higher r a t e s  ( f ig .  7(a) ) while 
the  January deviation ( re f .  1) from standard produces higher heat  loads 
( f ig .  7(b) ) . Approximately 24 percent higher heat load across the  blunt 
face w a s  obtained with the  use of t he  January deviation. 
be seen tha t  t he  atmospheric deviation has a s igni f icant  influence on 
the  magnitude of the  t o t a l  heat load. 

Thus, it can 

L’,X , Turbulent Heating Comparison with Laminar Heating 
, I  : I  

A s  turbulent flow i s  more l i k e l y  t o  occur during the  s teep  en t r ies ,  

Several locat ions on the  Apollo 

The length used 

a study was made of the  influence turbulent  flow may have on the  t o t a l  
heat load during a 20G emergency entry. 
command module were investigated and time h i s t o r i e s  of t h e  l o c a l  Reynolds 
numbers f o r  six of the  locat ions are shown i n  figure 8. 
f o r  the  Reynolds number i s  taken from t h e  stagnation point. 
conditions were computed from stagnation conditions behind a normal shock 

The l o c a l  
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expanded i sen t ropica l ly  t o  the  loca l  pressures obtained from wind tunnel 
tes t  correlat ions and the use of the charts  of reference 6. 
stream Reynolds number based on body diameter peaks a t  3.18 X 10 during 
t h e  early portion of t he  entry t ra jec tory  and reaches a value of 

2.64 x 10 

The free- 
6 

6 a t  600 seconds. 

6 The assumption of a t r a n s i t i o n  Reynolds number of .l5 X 10 , a 
value consistent w i t h  results found i n  reference 7, indicates  t h a t  
t r ans i t i on  i s  l i k e l y  t o  occur on the blunt face during s teep  en t r i e s  
( f ig .  8(a))  but not unt i l  la te  i n  the f l i g h t  on the  windward conical 
sect ion ( f ig .  8 (b) ) .  
ber  of 20 000 i n  a separated region on t he  Mercury spacecraft  conical 
sect ion (ref. 8), t r ans i t i on  could begin early i n  f l i g h t  on the  leeward 
conical section of  the Apollo configuration (f ig .  8 (b) ,  S/R = -1.468) 
which w i l l  a l s o  be i n  separated f low.  

Since t rans i t ion  w a s  observed a t  a Reynolds nun- 

Reynolds numbers calculated for t he  shallow ent ry  were found t o  be 
an order of mgnitude lower %han those of t he  s teep reentry. Figure 9 
shows t h e  t i m e  h i s t o r i e s  of the loca l  Reynolds numbers computed a t  the  
same locat ions as shown i n  figure 8. Based on t he  above assumptions, 
t r a n s i t i o n  w i l l  not occur u n t i l  very l a t e  during t h e  shallow ent ry  on 
e i t h e r  t he  blunt  face or t h e  conical section. 

The determination of t rans i t ion  Reynolds number remains a nebulous 
feat which suggests consideration of possible levels of turbulent heating. 
The theory of reference 9 w a s  used f o r  t he  turbulent  study w i t h  t r ans i -  
t i o n  beginning a t  the  Reynolds nmber a t  which the turbulent skin f r i c -  
t i o n  coef f ic ien t  exceeds the  laminar value ( R Z  = 15 000). The refer-  

ence length used i n  the  turbulent calculations i s  the  distance from the  
stagnation point t o  the  locat ion considered. 
heat loads are given i n  f igure  10 t o  i l l u s t r a t e  t he  turbulent increase 
over t he  laminar f o r  t he  s teep entry and how it compares with the laminar 
loads f o r  the  shallow entr ies .  As can be seen i n  figure 10 the  turbulent 
calculations,  designated with c i rcu lar  symbols, do not exceed the  shallow 
en t ry  heat loads fo r  the  L/D = . 3  t r a j ec to ry  but do exceed those of the 
L/D . 4  s h a ~ o w  entry. 

* v  
- r  

YX 

Distr ibut ions of t o t a l  

Single Mission as Heat Shield Qualifying Trajectory 

Two f l i g h t  tests were considered or ig ina l ly  t o  qual i fy  the  Apollo 
heat  sh ie ld  fo r  manned missions. 
heat  rates (s teep  entry)  while another w a s  t o  y ie ld  high heat loads 
(shallow entry).  A s ing le  t ra jec tory  has been proposed for  qual i f icat ion 
of the heat  sh ie ld  having an ensry angle of -7.13' and a gG acceleration. 
The calculated heating rates and loads f o r  t h i s  t r a j ec to ry  are compared 

One t r a j ec to ry  was t o  provide the  high 
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i n  figures 11 and E, respectively,  with those of t he  two or ig ina l ly  
planned entry tests. The mximum t o t a l  heating r a t e  computed for  the  
proposed t ra jec tory  i s  60 percent of the value calculated f o r  t he  s teep 
entry tes t .  The t o t a l  heat load ant ic ipated f o r  t he  proposed t r a j ec to ry  
i s  within 68 percent of the  shallow ent ry  t ra jec tory .  Time h i s t o r i e s  of 
t h e  stagnation-point heating r a t e s  a re  shown i n  f igure  13 along with the  
free-stream Reynolds number based on body diameter of 12.833 feet. 

Comparison of  NAA Trajector ies  with MIT Guided Trajector ies  

A s  a matter of i n t e re s t ,  a comparison of the  design t r a j e c t o r i e s  
The t h a t  have evolved over t he  p s t  two years i s  shown i n  f igure 14. 

development of Program Apollo has brought about revisions of command 
module weight and L/D estimtes that mke  the o r ig ina l  t r a j e c t o r i e s  
computed by NAA inapplicable f o r  heat sh ie ld  design. The NAA t ra jec to-  
r i e s  were based on a l i g h t e r  weight command module with a t r i m  L/D 
of .5  modulated by roll about the  ve loc i ty  vector. The heat sh ie ld  de- 
sign t r a j ec to r i e s  are now based on the la tes t  MIT guidance equations 
with a heavier command mdule a t  L/D's between .3 and .4. The NAA shal-  
low entry ( y  = -5.5') takes approximately 1500 seconds t o  t raverse  the  

atmosphere from 400 X 10 
t r a j ec to r i e s  take 950 seconds t o  t r a v e l  the same a l t i t u d e  change. In  

contrast ,  t h e  NAA 20G reentry takes only l3O seconds t o  reach 100 X 10 
feet while MIT s teep en t r i e s  require 400 t o  600 seconds. 
gram employed by NAA keeps the  t r a j ec to ry  i n  the  atmosphere throughout 
reentry but the MIT t r a j e c t o r i e s  sk ip  t o  attitudes between 230 000 and 
400 000 feet .  

3 3 t o  100 X 10 f e e t  a l t i t u d e  while the MIT guided 

3 
The roll pro- 

"he difference between the  NAA and MIT guidedentr ies  i s  re f lec ted  
i n  the heating. 
t he  locations of maximum heating f o r  t h e  two types of t r a j e c t o r i e s  a re  
shown i n  figure 15. 
points f o r  the  MIT t r a j e c t o r i e s  and near t he  corner a t  S/R = .9875 f o r  
the  NAA t ra jec tor ies .  

Comparisons of the  t o t a l  heating rates t h a t  occur a t  

The m a x i m u m  heating locat ions are the  stagnation 

Listed on t h e  figure a r e  the  t o t a l  heat  loads, 
2 (Btu/ft ), of the  corresponding heat rate h i s to r i e s .  The NAA Qto ta l  

heating values are based on a relative ve loc i ty  obtained by subtracting 
1160 f t /sec from the  i n e r t i a l  veloci ty  supplied by NAA. 

CONCLUDING REMARKS 

A study has been made of t he  e f f e c t s  of L/D, en t ry  angle, atmos- 

These parameters were var ied i n  an attempt t o  determine 
phere and type of boundary-layer f l o w  on t h e  heating t o  t h e  Apollo com- 
mand module. 
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the most c r i t i c a l  t r a j e c t o r i e s  and t h e  following observations can be 
made : 

a. As the L/D i s  decreased, the  maximum heat load locat ion on the  
blunt en t ry  face shifts toward the f l i g h t  stagnation point. 

b. The i n i t i a l  entry angle grea t ly  influences the loca t ion  of t he  
maximum heat load on the  entry face. 
located near the corner a t  S/R = .9875 fo r  the shallow ent ry  but moves 
t o  the  stagnation region f o r  t he  steep entry due t o  the  rad ia t ive  dis- 
t r i bu t ion  having a greater  influence than the  convective component. 
This t rend  has been observed with a l l  I" guided t r a j e c t o r i e s  computed 
a t  L/D d u e s  between . 3  and .4. 

The maximum t o t a l  heat load i s  

c. Use of t he  January deviation of densi ty  from the U.S. Standard 
atmosphere increases the  heat load a s  much as 24 percent over the  use 
of the  1962 U.S. Standard f o r  shallow en t r i e s  ( v  = -5.2'). No e f f e c t  
of t he  January atmosphere was noted on the s teep  en t r i es .  
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Figure 5.- Distribution of maximum heat rates around the pitch plane of the Apollo command module. 
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(b) Steep entry. 

Figure 5.- Continued. 
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(c) 20 G emergency entry. 

Figure 5.- Concluded. 
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Figure 6.- Distribution of heat load in the pitch plane of the Apollo command module. 
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(b) Steep entry. 

Figure 6.- Continued. 
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Figure 6. - Concluded . 
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(a) Comparison of maximum heating rates. 

Figure 7.- Atmosphere effect on heating. 
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(b) Comparison of heat loads. 

Figure 7.- Concluded. 1 ~ 
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Figure 8.- Local Reynolds number on the Apollo command module for steep entry. 
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Figure 8.- Concluded. 
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Figure 11.- Distribution of maximum total heating rates across blunt face. 
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Figure 12.- Laminar distribution of total heat load across blunt face. 
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